
RD-fii54 846 EFFECT OF NONUNIFORM SIZE ON INTERNAL STRESSES IN A i/I
RAPID SIMPLE SHEAR FL..(U) COLD REGIONS RESEARCH ANDU ENGINEERING LAB HANOVER NH H H SHEN FEB 85 CRREL-85-3

UNCLASSIFIED F/6 28/4 NL

EEiEEEEEuEEEImmmmEEEmmm



J.NIIlI

1111 .0 1112.

1.25 1111 1.4 1

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS-1963-A

.44

.'-......



REPORT 853 AUS Army Corps
q'* 0 EP OR of Engineers

:rt I/ 'i1 Cold Regions Research &
,- T 74410 Engineering Laboratory

2 Effect of nonuniform size on internal
stresses in a rapid, simple shear flow of

: granular materials
Part 2. Multiple grain sizes

X2

x 2 t

4#Q DTICSELECTE
__j MAY 22 I851

I Ths document ha boon approvedC.2 A for public release and sale; its:.-..,i.distribution is unlimited.

85 04 24 075

. .. ,-,.. "~ ', Z * . ... .



For conversion of S1 metric units to U.S./British
customary units of measurement consult ASTM
Standard E380, Metric Practice Guide, published
by the American Society for Testing and Materi-
als, 1916 Race St., Philadelphia, Pa. 19103.

Cover: Shear flow of multiple sizes of spheres.

Z7 Z



CRREL Report 85-3
February 1985

Effect of nonuniform size on internal
stresses in a rapid, simple shear flow of
granular materials
Part 2. Multiple grain sizes

Hayley H. Shen

b

-7

PI,

lj ri~fn~ C ou

SMAY 229D *

Approved for public release; distribution is unlimited, A

-o.o , -



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

CRREL Report 85-3 Iob 415,9O V6
4. TITLE (end Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

EFFECT OF NONUNIFORM SIZE ON INTERNAL STRESSES IN
A RAPID, SIMPLE SHEAR FLOW OF GRANULAR MATERIALS:
Part 2. Multiple Grain Sizes 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(.) 8. CONTRACT OR GRANT NUMBER(a)

Hayley H. Shen

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

U.S. Army Cold Regions Research and Engineering Laboratory

Hanover, New Hampshire 03755-1290

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
February 1985

U.S. Army Cold Regions Research and Engineering Laboratory 13. NUMBER OF PAGES

Hanover, New Hampshire 03755-1290 29

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

1Sa. DECLASSI FICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abettact entered in Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If neceeeary end Identify by block number)

Flow
Granular flow
Particle size distribution .

20. A&STF ACT" (Cwtaue a re va e w If neceseary ad identify by block number)

In the past all theoretical analyses for rapidly sheared granular flows assumed that the granular solids are either disks or
spheres and are uniform in size. However, natural materials that create these granular flows are in general irregular in
shape and have various spectra of sizes. The stress and rate of energy dissipation levels in granular flows are significantly
influenced by the size distribution. In part I of this report seriesp the formulation of the constitutive equations consid-
ering a two-size granular mixture is presented, where the ratio of the two sizes is nearly one. Here,, in part 2, the consti-
tutive equations for a two-size mixture are extended to include a general size ratio. In addition, a complete spectrum of
size distribution is incorporated, which allows the quantification of the size distribution effect in the most general way.

In analyzing the stresses, intergranular collision is assumed to be the major dynamic activity at the microscopic level.

DD1"" 1473 EDIToIO OF I NOV 65 IS OBSOLETE Unclassified
JSECURITY 

CLASSIFICATION OF THIS PAGE (When Data Entered)

-ECUR*T-



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(hm Data BnteomWE

20. Abstract (cont'd).

Because of the present limited knowledge of treating shape effects, the analysis is confined to the flow of either disks or
spheres. The result of this work provides necessary information for a more realistic analysis of natural and industrial-I • , ? 2 -: .1 . C) ,:. • - ,' ,-
granular flows. ,,

S'U

'U

,.q

2'U

I.

ii Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

~~~~~~~~~~~~~~~~. '*.,'. ,.,, ..... ,.,......•... ................ ..... ...... , ................ ,..... . .,



" I.

PREFACE

This report was prepared by Dr. Hayley H. Shen, Assistant Professor, Department of Civil and
Environmental Engineering, Clarkson University, Potsdam, New York. The research effort was
jointly supported by the Engineering Foundation under Grant RI.A-83-02 and the U.S. Army
Cold Regions Research and Engineering Laboratory. The latter is where the author spent a year
on leave from Clarkson University to work as a Research Physical Scientist in the Snow and Ice
Branch.

The author greatly appreciates both of the above sources of support. The author also thanks
reviewers Dr. S.C. Colbeck and Dr. D.S. Sodhi for their comments and M. Hardenberg for his
editorial assistance.

The contents of this report are not to be used for advertising or promotional purposes. Cita-
tion of brand names does not constitute an official endorsement or approval of the use of such
commercial products.

. 2

*

= .. . ..-. . . . . . .



CONTENTS

Page
A b stract .......................................................................................................................... i
Preface ............................................................................................................................ iii

Nomenclature ................................................................................................................. v
In troductio n .................................................................................................................... I
Constitutive equations for a two-size mixture ................................................................. 2
Limiting case of the two-size mixture ............................................................................ 6

Complete spectrum analysis for spheres and disks .......................................................... 12
C onclusio n ...................................................................................................................... 17
Literature cited ............................................................................................................... 18
Appendix A: Derivation of collision frequency between neighboring spheres that

follow the mean shear flow without fluctuations ........................................................ 19

ILLUSTRATIONS

Figure
1. Shear flow of a mixture of spheres ........................................................................ 2

2. A control volume in a granular flow of uniform spheres ....................................... 3
3. Particle size distribution of spheres ...................................................................... 6
4. Simple shear flow of spheres in dust-like material ................................................. 7

5. Asymptotic solutions for shear stress in a simple shear flow of spheres of two
sizes .................................................................................................................. 1 1

6. Shear stress in a simple shear flow of spheres of two sizes .................................... 12
7. Particle size distribution ........................................................................................ 13

8. Effect of log-normal size distribution on the shear stresses in a simple shear
flow of spheres or disks ................................................................................... 17

iv

" .... . . . .. ? ... . . . .-. ' 'i i -- , - .. . .. " " "



NOMENCLATURE

AL D
C total volume concentration
CD probability density function of volume concentration
CL' Cs  partial volume concentrations
CLO, Cs 0  densest partial volume concentrations
CO  densest random volume concentration
CSa actual volume concentration of small spheres
D, D' diameters
DL, Ds  diameters of large and small spheres
D M  mean diameter
d thickness of a disk
F - average energy dissipation in a pair of identical spheres

ED D', ELL, ELS' ESS average energy dissipation in a pair of like or unlike spheres
f collision frequency/2

F(D) probability distribution
GD, GL, Gs  number densities
L,S large and small

2 distance traveled before a collision

DD' - DD2'
A LI ' ALL2'
6MLS I 'OMLS 2,
AMSL I MSL 2 , average momentum transfer between like or unlike
A 1ss ', AMSS2 spheres in the xI, x 2 directions
AMi  average momentum transfer in the xj direction
AMPQj average momentum transfer between a P-size and a

Q-size sphere in the xj direction
ND number of spheres with diameter D in a umt volume
NLN s  number of large or small spheres in a unit volume
NLL, NLS, NSS collision frequencies between like or unlike spheres in a unit volume

LL, NS, N collision frequencies for a specific sphere

NpQ collision frequency between a P-size sphere and all the neighbor-
ing Q-size spheres

P, Q indices for sphere size
P(D) probability density function

PD number density of spheres with diameter D on a unit surface
Pi number density of spheres on a unit surface normal to x i direction

PL , L2,PSIPS2  number densities of large or small spheres on a unit surface normal
to x, or x 2 direction

Ppi number density of P-size spheres on a unit surface normal to
x i direction

Ps number density of small spheres on a unit surface
R average radius of a cell
RL, R s  average radii of cells centered at large or small spheres
RC Cs/CL
RD DSIDL
s average gap between adjacent spheres

s L sS  average gap between adjacent large or small spheres
u mean velocity

, , average relative velocity of large spheres
V[) Vl), 'L VLS fluctuation velocities
VDM fluctuation velocity of mean size spheres
x*,X2 coordinates

v



C(,0,0 angles
f restitution coefficient
i7, a parameters for log-normal distribution
I' coefficient of friction

Ps solid density
f nondimensional shear stress
T o stress in the xi direction on a plane normal to xi direction
r2 1 , T22  shear and normal stresses on a plane normal to x2 direction
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EFFECT OF NONUNIFORM SIZE ON INTERNAL
STRESSES IN A RAPID, SIMPLE SHEAR FLOW OF
GRANULAR MATERIALS
Part 2. Multiple Grain Sizes

Hayley H. Shen

INTRODUCTION

The flow of a granular material is a dynamic phenomenon that can be modeled by macroscopic
equations describing the balance of mass, momentum and energy within the system. A correct
formulation of the stresses and the rate of energy input-output is crucial to the success of a math-
ematical model of such a system. The mathematical formulations of the stresses and the rate of
energy input-output are called the constitutive equations. The constitutive equations for a flow-
ing granular material can range over a wide spectrum, from Newtonian to highly non-Newtonian
forms.

Although a nondimensional parameter that determines the form of the constitutive relations
is unknown yet, it is believed that the flow rate, the concentration and the material properties of
the granular solids determine the regime of the granular flow and hence the form of the constitu-
tive equations,

Within a given flow regime, the constitutive relations are determined by the way energy and
momentum are transferred microscopically from one location to another. Different transferring
mechanisms produce different constitutive equations. Two examples of such different constitu-
tive equations can be found in Bagnold (1954) where either a linear or a quadratic stress-strain-
rate relation is used, depending on the flow regime. In slow flow viscous dissipation in the granu-
lar interstice dominates and gives a linear stress-strain-rate relation, while in a fast flow, dissipa-
tion by collisions among granules dominates and gives a quadratic stress-strain-rate relation simi-
lar to those in a turbulent fluid flow. Another type of constitutive relation has been derived for
deforming ice fields in the polar seas where pressure ridge formation was the major dynamic acti-
vity (e.g. Rothrock 1975). It is found that the stress-strain-rate relation is of the plastic type.
Recently, however, there have been some doubts about the applicability of this constitutive law
to the ice edge where concentration is too low to form ridges.

In the past few years, a number of researchers have formulated constitutive equations for granu-
lar flows (Kanatani 1979, Ogawa et al. 1980, Shen and Ackermann 1982, Campbell and Brennen
1983, Walton 1983, Jenkins and Savage 1983 and Lun et al. 1984), and most of these have as-
sunied intergranular collisions to be the major momentum transfer and energy dissipation mechan-
ism. The resulting constitutive equations are quadratic and check well with experimental data
(Shen and Ackermann 1982). The above researchers found that the stress level generated in such

:..-:i-": • :--?..: ; _ -,? ;:-? .- ',:.-...Yi:i. :: . -::-: ": i, . -: " -." : .i -- - ; . -. ,. .



a granular flow depends crucially on material properties of the physical constituents: the restitu-

tion and frictional coefficient, densities of the granular solid and the interstitial fluid, and the

drag coefficient of tile fluid.
While able to give a great deal of physical insight into the dynamics of a fast granular flow, the

above studies assumed that the granular solids are either disks or spheres and are uniform in size.

Natural materials of interest are generally irregular in shape and have various sizes. As evidenced

by experiments on sediment transport (e.g. Gilbert 1914, Durand 1953), tinder the same driving

mechanism, a widely graded sediment is transported at a much higher rate than a relatively uniform-

ly graded sediment. These phenomena suggest that the stress levels and the rate of energy dissipa-

tion are significantly influenced by the size distribution existing in the flowing granular material.

This report presents the formulation of constitutive equations incorporating a size distribution

in the granular material. Intergranular collision is assumed the major dynamic activity at the micro-

scopic level, as in an earlier work where granular materials of one size were considered (Shen and

Ackeimnann 1982). Because of the present limited knowledge of how to treat shape effects, the

analysts will be confined to the flow of either disks or spheres. Nevertheless, the result of this

work provides information necessary to a more realistic analysis of virtually any natural granular

flow. including drifting ice fields in the polar seas and avalanches of snow or debris.

Tie analysis for a complete spectrum of sizes is based on the result of analyzing a two-size mix-

ture (Shen 1985 f. For the sake of completeness, the analysis for a two-size mixture is reviewed

brietly in what follows: the details are given in the companion to this report, Effect of nonuniform

sic om pitirPlal sirt'cscs in a rapid, simple shear flow ofgranular naterials: Part 1. Two grain sizes.

Fie two-sL/e mixture considered here is an assembly of spherical particles because spherical

particles model a wide variety of natural materials and because the only existing experimental

data for direct comparison with the theory were obtained for spherical particles. However, it is
a straightforward extension to apply the same analysis to disks. The complete spectrum analysis
will be carried out for both spheres and disks.

CONSTITUTIVE EQUATIONS FOR A TWO-SIZE MIXTURE

Assume a hoiti0geneCous tmixture of D
spheres with two sizes tinder a simple shear 2

motion as illustrated in Figure I . The in-
terstitial fluid effect is not included in this 0 U (X2)

model. In a crude wav, tihe interstitial fluid
effect can be treated as did Ackernann and 0I_ ('N
Shen (1982 ). Fhe diameters of the large (
and small spheres are D_ and s respective- T -,
ly. Although extending this model to nix-
tures of different material properties is a
straightforward matter, in the present studr
only the si/e effect is considered. The ma-
terial property for all spheres is thus the

saute and includes the density p, the resti- 1-iurc 1. Shar.17 of oa mixture (Jsphcrcs.

tutionl coe'ticient c. and the frictional co-

efficient p.
L.et (G and (, denote the nrinher percentages of the large and small spheres in a unit voltne

respectiveh .'I his thea ns that it 'l ,(;S = 70 30. there are 70 large spheres and 30 small ones in

a randomi sample (1i 0() spheres. I lie ratio of large to small spheres surrounding an average sphere

isI (I" or a gicti coimUhillat(t GI G(i am)i D s, let C, denote the hollIe Concentra-

tio of the spheres Alhet all nteighiboring spheres are touching, i.e.. (,, is the volume concentration

fr the de ,Tri ra1tm packitu It all .pheres ire then separated by the distance s away from tile

reighhoritre wie",, the s hirtume 4 . rcltration for this looser state is
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C = C,, [R/(R+s)] 3 (1)

where R is the radius of a typical "cell" formed by a given sphere and all its neighboring spheres
(the power becomes 2 for disk-shaped material), and is given as (Shen 1985):

R = GLRL + (; R (2)s s

where

R L = GDt + Gs(DL + Ds)/2 (3a)

Rs = GL (D + 1), )/2 + GsDs  (3b)

Whlen sheared, the assembly of these spheres will start to collide with each other and produce
velocity fluctuations. The momentum transfer caused by these collisions gives rise to stresses
which are modeled as (Bagnold 1954):

-T% = IPi " .t • 'All, (4)

where ri, = stress in the x i direction on a surface normal to the xi direction

AMi = momentum transferred in the xi direction

f = collision frequency/2

pi = number of spheres per unit area normal to the x i direction.

The formulation of stresses expressed in eq 4 does not incorporate the fact that there are two
kinds of spheres, in which case we consider the control volume shown in Figure 2. Stresses are
produced by four different kinds of collisions. The correct form of eq 4 for a two-size mixture
is thus

NsQ

rij = MpQj PPi (5)
P,Q

e AAF'Q. is the momentum transfer in the xi direction when a P-size and a Q-size sphere
collide (PQ can be large or small as denoted by L or S), pQ is the frequency of collisions any
given P-size sphere receives from Q-size particles, and pPi is the number of P-size spheres on a
unit area normal to the x i direction.

00Exterior Particles

@,0 Surface Particles

0,0 interior Particles

00

!Igtire 2. 4 omitrd i, olunc in a granular flow of uniforn spheres.
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shear stress (two-size with spectrum given by Figure 3b)_
shear stress (single-size with spectrum given by Figure 3a) -5

It is worthwhile noting that in all the stress computations, C,)= 0.74 was used. This value of CO

corresponds to the hexagonal dense packing of single-size spheres. In a granular material, the dens-
est state in which all neighboring spheres are touching may not exhibit the hexagonal structure.
Moreover. the existence of more than one size in the flowing assembly can further vary the value
of (',,. The effect of size distribution on the value of C. has been studied (e.g. McGaw 1967,
Visscher and Bolsterli 1972), but is not sufficiently understood for the purpose of this work. Fur-
ther study is needed tl incorporate the variability of C. as a function of the size distribution.

As an example, the results shown in eq 50a and 5 6a are applied to the log-normal distributions

( 12 exp ( I (In D-r7)2 (7

The result is shown in Figure 8 with 77 = 0, 1.0 1

D0 miem 
3 '. D max = e- 3 0 and

08

T T 2 I (log-normai)/r 2 l(D ) 06 )-ss

06 _

where D,, is the mean size of the log-normal 041 Spheres

distribution and the shear stress T21 (DM) is -
computed assuming a single-size assembly 0.2-
(Shen and Ackermann 1982, 1984). -

0 02 0.4 0.6

CONCLUSION

Theoretical analysis of the stress-strain-rate Fignre 8. The effect of log-normal size dis-

relationships for rapid granular flows have been tribution on the shear stresses in a simple

limited to single-size assemblies of spheres or shear flow of spheres or disk;.
disks. Extension to an assembly with an arbi-

trary size distribution is needed for analyzing
real granular materials. A study was carried out for a two-size mixture of spherical particles (Shen
1985i. In that study, assumptions were made that restrict the applicability of the result to cases
when the size ratio is nearly 1.

Two studies are made in this report. First, the stress-strain-rate relationship is established for
a binary spherical assembly at the other extreme, namely, as the ratio of the two sizes is nearly 0.
With the combination of the two extreme cases when the size ratio is nearly 1 or 0, a smoothing
technique is used to give an approximate stress state for any intermediate size ratio. Hence, the
constitutive equations for a binary assembly of spheres of an arbitrary size ratio are obtained.
Second, an arbitrary spectrum of size distribution is incorporated into the analysis. The effect of
size distribution of the stresses is quantified for both the sphere-shaped and the disk-shaped parti-
cles. The result demonstrates a reduction of stresses as the size gradation broadens. This phenom-
enon may explain some of the observations from earlier experimental work on sediment transport.

As indicated earlier in this report, further work is needed to improve the derivation for the av-
erage gap between neighboring spheres, since the densest solid concentration, although assumed
here to be a constant, is a function of the size distribution. This is true for both mixtures of two
sizes and of a crnplcte size spectrum. The explicit form of this function is unknown yet.

Also, in the case of a complete cnectrum of sizes, as the size gradation widens, the larger parti-
cles' fluctuations reduce to zero because of the equipartition of energy. In this case, the analysis
has to be modified to reevaluate the dynamic interactions involving larger particles. For a binary
mixture, this modification has been carried out in this report. lowever, it is not clear how to pro-
ceed along this line for a general spectrum of sizes. Nevertheless, based on the result of a binary

17



Ps" du D D D 2 DD2  (52a)
p~M) ,1 -r- (l7- 2 + 20,

= + v , D2 D (52b)

D_7D D D2
D+D

2

ird ( + !1(1e -
2 (1+C) 2) 1,2 +1,)2,) (52c)EDI) = Ps - 4 r 4 D ( D  'D2 +D 2 "

The equipartition of energy becomes

D' , 2  
V ,= (53)

Substituting eq 41d, 5 la-d, 52a and c into eq 47, we obtain

2(du )2ff(D+D? + CDnCD' DI+ /D 2'D'- dDdD

v' D2  2 D (54)
ff CDCD' 

(

D3 D'3 dDdD

where

I+~Ek 1+ (55)
37r(

- + 1P (!+E) - 2 l +e)(

The shear and normal stresses are computed by substituting eq 41d, 51a and c and 52a and b into
eq 39:

l+e du ff( + S P C C  DID' dD

721 r dx2  fCDD D2 (56a)

ff(DID) 2 
2 C VdD'dD

2(+) JDCD CD' D'

T2 2  -P, sfJ -G 2+ (56b)

where v, is defined in eq 54 and s is defined in eq 51d.

When P(D) equals the Dirac delta function 6(D), eq 50a and b and 56a and b reduce to the

stresses for a single-size sphere or disk assembly as given by Shen and Ackermann (1982*, 1984).
If eq 50a is used for a complete spectrum of sizes to reevaluate the comparison between the

theory and the experimental data obtained by Saage and Sayed (1980) discussed previously, the

new theory gives

"Because of an underestimation of two particles' relative fluctuation, the calculated stresses for spheres
should have been i/.,2 of what were shown by Shen and Ackermann (1982).

16
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If eq 41-46 are substituted into eq 47, the fluctuation speed for the mean size DM is obtained:

2 ff(D+D' CD CD' 12k - II( + s) (DD'3 )-h dD'dD
, 2 X2 2 (48)
DM DM ffCDCD, (DD')- 9 / 2 dD'dD

where

(I+e) (0.05 + 0.08 p)k _C=  Ctj12( 6 (49)

4 + I 4

For any given size between D and D+dD, the fluctuation speed can be derived using eq 46 and 48.

After substituting eq 41c and d, 43a and b, 46 and 48 into eq 39, the shear stress 72 1 and

normal stress r22 in a simple shear flow of spheres are

du D+D' D (DID') 3V dD'dDdu JJ(50a)DC' 3 +'
T= p(1 +e) (0.05 + 0.08 ) 2CD (50a)

JD 3 VDdD

ff (DID') 3
/2 CDC D 'v.22I +D/D')3~j D'3 VD, adD'dD(Sb

2 2 (e) Ps_7__2_D (50b)

f-v dD

These were computed with a PC Zenith-I 00 using a program written in PASCAL. The computa-
tion only takes a few seconds to run for all the distribution functions tested.

Based on the analysis of a planar, simple shear flow of a single-size disk assembly (Shen and
Ackermann 1984), the above analysis for a spherical assembly can easily be extended to a disk-
shaped material with a uniform thickness. Consider a layer of disks with uniform thickness d and
a distribution of diameters as given in Figure 7a or 7b. This layer of disks is undergoing a simple
shear flow in its own plane. Equation 39 can be applied directly to evaluate the stresses generated

by disk-disk collisions. Using the notations defined before, this time for a disk-shaped assembly,

CD ID
2

G D fC,)ID2dD (51 a)

4 CD
NV1) -- (5ib)

4 C1) (5ic)

1) (Sid)
CD 1/2

s =R(-) -R (51d)
C

where R is defined in eq 42b, and

15



GI) fCJ/3 dD (41 a)

6 C)
ND- r D 3  (41b)

6 C1)
PiL D D2  (41c)

N1 )D' G d 
(41 d)

where

s = R -0-) - R (42a)

and

f DI' d+D' d
R=ffGG'D 2 dD'dD. (42b)

The average momentum transfer and energy dissipation are

4 l ) O.DO 0 , 8MT) du D+D' 2D 3 D'3

ADWI= " (MDD, iP 6  e)(. 0 - (-2-- +s) +D (43a)

2 -D = 2 ' '2 D 3 3
3

AM - ,Os2 (+e) v + v, D3 +D13  (43b)

Af) 1 )' = +r .-.e2  P2(6+e) (V1 + , D 3  (43c)
I) = ,°S6 + -IT 4 D D,)Y +D4'3

The equipartition of energy takes the same form as before:

D3V1 3 V12

D v = D 'Dv , (44)

Given an arbitrary size distribution designated by some probability density function P(D), the
mean size DM is

DM = f DP(D)dD. (45)

The fluctuation speed for this mean size is

'2M 
= 

V'2 D 3

The energy balance equation, eq 9, now takes the form

di T PdD'dD ffE '- dD'dD. (47)

14
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F(D)

0 Dinn  D Dine xI
a. Probability distribution.

P(0)

d D

d D

RDn D D' Dmax b. Probability density.

Figure 7. Particle size distribution.

MD D
DD 2 dD' POd. (38)

Hence the total stress caused by all possible collisions is

flA DD' , dD' PDdD (39)

with the integration limits defined by the range of size under consideration.
If the results obtained in the previous section for two discrete sizes are applied to the present

case of a continuous size distribution, the quantities in the above notation list are (with the under-
standing that all integrals are taken from the minimum diameter to the maximum diameter)

CD = P(D) C (40)

where P(D) is the given probability density function of the size distribution,

13
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a. b.

1.0- .0 RD- .0
cs _0- --- 0.8

~ 0.6

' 2 01 - 0.1 04
2 , . T2 1

0.2
0.01 0.01- -
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C0. 5 /-0.2 C=0.5 0.2

, . O0 . O O0 1, 0 . 0 00 1 1 1
0 0.2 0.4 0.6 0.8 .0 0 0.1 0.2 0.3 0.4 0.5

Figure 6. Shear stress in a simple shear flow of spheres of two sizes.i
By use of the revised theory of a two-size mixture, the comparison between the theoretical pre-

diction and experimental data obtained by Savage and Sayed (1984) becomes

shear stress (two-size given by eq 37 with n = 3)
shear stress (single-size given by eq 13a)

COMPLETE SPECTRUM ANALYSIS FOR SPHERES AND DISKS

Based on the analysis for a two-size mixture, stresses can now be obtained for mixtures with
any size distribution. A typical size distribution in a natural material is shown in Figure 7a, where
F(D) is the cumulative volume percentage of spheres that have sizes up to D.

The derivative of F(D) is denoted by P(D) as shown in Figure 7b. The volume fraction of
spheres that have sizes between D and D+dD is represented by P(D)dD. The results obtained pre-
viously for a binary mixture can be directly transferred to this complete spectrum analysis. The
two discrete sizes DL and Ds are replaced by two differential size ranges: D to D-dD and D' to
D'+dD'. The spectra for both D and D' are the same and are determined by the probability distri-
bution function F(D) or the probability density function P(D).

The following notations will be used in the succeeding discussions:

C = total volume concentration of all spheres
CDdD = volume concentration of spheres with diameters D to D+dD
GDdD = number percentage of particles with diameters D to D+dD
NodD = number of spheres in a unit volume with diameters D to D+dD
PDdD = number of spheres with diameters D to D+dD on a unit surface
Ns dD' = frequency of collisions a D-size sphere receives from all the spheres

with diameters D' to D'+dD'
AMDD' = average momentum transfer between two spheres of diameters

ranging from D to D+dD and D' to D'+dD'
EDD' = average energy dissipation because of a collision between spheres

with diameters D to D+dD and D' to D'+dD'
v D = fluctuation speed of spheres with diameters D to D+dD
s = average gap between adjacent spheres.

Using the notation above, we see that the rate of momentum transfer across a unit surface because
L of collisions between spheres of diameters D to D+dD and D' to D'+dD' is
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Figure 5. Asymptotic solutions for shear stress in a simple shear flow of spheres of two sizes
(dashed lines RD - 0, solid lines = RD - 1).

14 fluctuations are not negligible. However, this analysis gives a possible condition under which Bag-
nold's assumption is valid: when large spheres are sheared in dust-like material, the large spheres
only move with the mean flow and the resulting stresses have the same characteristics as those for-
mulated by Bagnold (1954). Equation 36b also shows that as M increases from 0 to 4/7, a reversal
of T22 from negative to positive occurs. It is believed that if particle rotations due to the friction-
al impact are included in the analysis, such reversal will be removed and r22 will stay negative.

In general, as the shearing spheres decrease in size, the stresses decrease too. Equations 36a
and b are derived for the case when RD approaches 0 while Cs and CL are fixed, therefore they
set up a lower bound for the stresses in a binary mixture. For a given set of Cs, CL and DL, as
Ds approaches 0, the stresses must reduce monotonically.

Equations 13a and 36a are plotted in Figure 5 where the general behavior of the shear stress
for 0 < RD < 1 is depicted. The dashed curves are from eq 36a, which represent the case as RD
approaches 0; the solid curves are from eq 13a, which is applicable as RD approaches 1.

An analytical formulation of the stresses for an arbitrary RD is difficult. However, with the
two limiting cases quantified in Figure 5, smoothing procedures as discussed by Churchill and
Usagi (1972) can be used to combine the two curves into one curve that describes the stresses for
the entire range of RD. A possible way to join the two limiting cases is given as:

r.1 (RD) T (RD) + P1r" (RD) (37a)

where

/$ - ( 1- o(i(--) )fl (37b)
\~~( 7"bl))

and rijo are the stresses given by eq 36a and b, which correspond to RD "0, and rij are the
stresses given by eq 13a and b, which correspond to RD -. 1. The larger n is, the closer Tij follows
the limiting values of %i* and 7-. Equation 37 approximates the stresses for a two-size mixture
of any 0 <RD < 1. r21 (RD) is plotted in Figure 6 with n = 3. It was found that for n > 3, the
solution given in eq 37 remains independent of n up to the second decimal place.

VI.
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l'7': dU DL L L SS+SL2 C(lh

DL(, ) 2 C (31 b)-22 = - (l+e) (-0.07 + 0.04()31b)
T2 2 =p2 DL S

in which the terms involving the square and higher powers of RD are dropped. The energy dissi-
pation in a pair of like spheres' collision is

3 2
ELL =PS 6  dxL 2 /r 4 (32)

where collisions are assumed to occur with relative velocity determined strictly by the mean flow,
and

ESS =p + (33)
E . 5 --- v (--- 4

' where collisions are assumed to occur at relative fluctuation velocity. Since the large spheres have
- "infinite mass compared with the small spheres, we have

ELS = ESS . (34)

S.Substituting eq 10, 23, 27, 31a, 32, 33 and 34 into eq 9, we obtain vs as

1+e D508 + 2 CL 1 1_-c2  U(_.E) -p
2 (1+f)2. ~DL+SL)3 CL 1/3(.05 + 0.08 p) (-"L "L)- sL

CS -E2 + A(l+e) p2 (I+C))

du

The shear and normal stresses are thus obtained after substituting eq 35 into eq 31a and band
setting DS/DL equal to zero,

' '"/'1 P -- (d"--2 2/3 C2/3
T2 1  m 25 2(1 +C) (0.05 + 0.00/J) L C/3 (36a)

P D 2 I08 / 3

=--0.07+0.04 /i
'2 0.05+0.08 p . (36b)

" '-An interesting observation is that r2 /T 2 2 is only a material constant now, independent of the
solid concentration. This phenomenon is quite different from the result when RD approaches 1

S-. as shown in eq 13a and b. Bagnold (1954) derived the stresses assuming that single-size spheres
-' •do not fluctuate while being sheared in a Newtonian fluid. His result also demonstrated that

. 2 1/r 2 2 is independent of the solid concentration. Experiments show that velocity fluctuations
do exist in the shearing flow of a nearly single-size solid-fluid mixture and previous analysis,

,5 which includes velocity fluctuations, shows that -2/1 /-22 does depend on solid concentration
(Shen and Ackermann 1982), hence Bagnold's result does not describe the flow when velocity

,1* 10

*1
"7

<. : *... . ... ,. .. .. , _,. _ _ . _._, . . . ... . . . .. . .. . . . . . ,- . .. .. . . , .- ,. : . >,.< h:-: .,,._ _ _



Cs= CsIl -CL). (24)

Let Cso denote the densest concentration of the fine spheres,

.| Cs._ )( (25)"" Cso \Ds +ss

After substituting eq 24 into eq 25 and solving for ss,

ss = Ds ((CsoICsa)' /3 - 1). (26)

Let NSL be the frequency of collisions between a small sphere and the surrounding large spheres.
The total number of collisions between large and small spheres is equal to the product of Nfjs and
the number of large spheres and also equal to the product of NSL and the number of small spheres,
therefore, C DS3(27)

N L=NIs (D) (7

When a small sphere being considered is not adjacent to a large sphere, the collision frequency
between a small sphere and the surrounding small spheres is

Nss = vs/Ss . (28)

If the small sphere being considered is adjacent to a large sphere, then only half of the collisions
of the small spheres are with small ones; the other half are with large ones. However, since the
number of small spheres minus the number of small spheres adjacent to large spheres, or

6Cs  6Cs  
6 CL 6Cs( Ds ).... nD - rD 2 D.7D = rD- 1 - E6 CL)-6Cs/7TDs3 as Ds/D -0

the above result indicates that as DsIDL approaches 0, almost all the small spheres are surrounded
by only small spheres. Hence, eq 28 is a good approximation of the collision frequency between
any small sphere and its surrounding small spheres.

As discussed earlier, as RD approaches 0, v~approaches 0 and large spheres follow the mean
flow motion. In this case the momentum transfer in both the x, and x2 directions in a collision
of two large spheres is a result of the relative motion from the mean velocity gradient only.
Hence,

rt du
ZMLLI = s (l+e) (0.05 + 0.08 p) (DL + SL) (29)

dX2

which is the same as eq 6a in the previous section, and

irDt d
A L = (l+e) (0.07 + 0.04 p) (DL + ) - (30)

which is obtained by averaging the momentum transfer induced by the mean flow in the x2 -direc-
tion (while eq 6b was obtained by averaging momentum transfer induced by the fluctuation in the
x2 -direction). Substituting eq 21,23, 27, 28 and 29 into eq 5, we obtain the shear and normal
stresses in terms of the unknown vs,

9
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centration of large spheres CL, the average gap between two adjacent large spheres can be com-
puted from

CLo DL+SL)

where CLo is the densest concentration of large spheres. Hence

SL =DL) (19)

The collision frequency between a large sphere and its neighboring large spheres, NSL, is the ratio
of their average relative velocity and their average gap size. It is shown in Appendix A that

31r12 r/2

f f u 0 (DL + s) coso do dO

N/s Tr/2 0dX2LL 37r/2 7T/2 (20a)

I f - DL sino cosO + %/D2 os 2 O + (DL +SL)2 -D151 do dO
ir/2 0

where the following binomial expansion may be used for simplification,

.D[ sin2 
2cos

2 0 +(DL + sL)2  [ D OL (D+sL) Sin cosO

(I (- sin2Z O s 0) (2D LSL +sL2)

4- + (20b)

2V (DL +sL)7 sin cos2 0

When SL/DL is small, eq 20a reduces to

7r du DL+SL
NLL (21)

2 dX 2  sL

This approximation overestimates NLSL if sL/DL is not very small, or equivalently, when large
spheres become sparse.

Since large spheres do not fluctuate, the collision frequency between a large sphere in Figure
4 and the surrounding fine dust-like spheres is

fs
N's =Ps " AL (22)

where p. is the number of fine spheres per unit area in the flow field, AL is the surface area of the
large sphere, and fs is the frequency of fluctuations of a fine sphere. Hence

N[s = 3Cs DL S (23)

where s. is the gap between two adjacent fine spheres. Rather than assuming that the average gap
between small spheres is the same as that between large spheres as was done in the previous section,
a more realistic model will be pursued as follows, which applies to the case when RD approaches 0.
Since the available volume for the fine spheres is I -CL, the actual concentration of the fine spheres
that fill the interstice of the large spheres is

8
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x, Figure 4. Simple shear flow of spheres in
dust-like material.

In the limiting case as RD approaches 0, it is no longer reasonable to assume that the mean gap
between small spheres is the same as that between the large ones. Most importantly, in this limit
the equipartition of fluctuation energy defined in eq 12 forces vL to approach 0. The equipartition
of fluctuation energy still applies as RD approaches 0. However, the collision frequency needs to
be modeled differently in this case, as will be explained below.

As modeled previously, the collision frequency is calculated as the ratio of V and the mean gap
size between spheres. Therefore, when vL approaches 0, the collision frequencies involving large
spheres approach 0. The stress, which is now obtained by collisions between small spheres, is pro-
portional to Ds . Hence when RD approaches 0, the stresses approach 0 (see Figure 5a in Shen
119851 ). This result contradicts reality, however, since when the concentration of large spheres is
high, the existing mean shear as shown in Figure 1 must result in collisions whether particles fluc-
tuate or not. In fact, the collision frequency between neighboring spheres, if modeled rigorously,
should be a function of both the velocity of fluctuation and the relative mean velocity ascribable
to the mean shear flow. It is when the fluctuation speed is much higher than the relative mean
velocity that the collision can be modeled as a result of fluctuations only. As RD approaches 0,
vL approaches 0 and the collisions between large spheres become a result of the relative mean
shear velocity alone.

In the limiting case as RD approaches 0, we may view the two-component system as an assem-
bly of large spheres sheared in a highly energy-absorbing material. As illustrated in Figure 4, this
material consists of numerous fine dust-like particles that are fluctuating and spherical. These
fine particles collide with each other and the large spheres. The large spheres, driven by the mean
shear motion, occasionally collide with neighboring large spheres. The collisions between large
spheres cause them to temporarily deviate from the local mean motion. From the energy point of
view, this temporary deviation of the large spheres' velocity produces a fluctuation energy in them.
Because of the equipartition of energy, this temporary imbalance of fluctuation energy is absorbed
by the surrounding fine dust particles. As RD approaches 0 the amount of energy dissipated per
collision between the large and small spheres remains the same as described by eq 1 lb and 12. How-
ever, as CS/CL is kept constant, and as RD approaches D, the number of the fine particles surround-
ing the large spheres increases as RD 3 . The fluctuation speed of the small spheres and the colli-
sion frequencies increase as RD -3/2. Hence the time scale of absorbing this energy imbalance de-

* m creases as RD 9/2. Therefore, as RD approaches 0, the large spheres' motion reduces to the local
mean velocity long before the next collision between the large spheres takes place. In this limiting
case, the collision frequency between large and small spheres, which is the main factor of the
stress generation, is no longer a function of PL, but rather a function of the mean velocity gradient
alone.

Consider randomly distributed large spheres sheared as shown in Figure 4, with the interstice
[ .filled with small spheres with diameter Ds approaching 0. The large spheres travel strictly with

the mean flow. The average collision frequency between a large sphere and the surrounding
large spheres is

NsL VL/st (17)

where VL is the average relative velocity between two adjacent large spheres and SL is the average
gap between two adjacent large spheres. In a random assembly of large spheres, with a given con-
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Figure 3. Particle size distribution ofspheres (after Saved 1981).

V. where

RD= D/DL ,RC Cs/CL (14)

F= RD-' + f'_ + 0l+-s RCRD- +  (I +RD-' +2f,)(l+RD-'(15)

i." ,;and

fI -R D3 + RC --C f/3 (16)

We now compare the model with two tests conducted by Savage and Sayed (1984). Test I
used nearly uniform plastic beads with a mean diameter of 1.32 mm. Test 2 used a 7:3 mixture of
of the same material with mean diameters of 1.65 mm and 0.6 mm. The weighted mean of the

[ two sizes is 1.34 mm. The size distributions for test I and test 2 are given in Figure 3 (Sayed 1981)
1The ratio of the shear stresses obtained in these two materials was measured to be

shear of test 2/shear of test 1 = 1/4.5 .

The theoretical result according to eq 13 is

shear of test 2/shear of test I = 1/10

This comparison shows that the theoretical prediction is in the right order of magnitude; however,
it is apparent from Figure 3 that the size spectrum in test I and the two individual spectra in test
2 are not very narrow. The above comparison will be revised after the analysis for a continuous
size distribution is completed.

S-'LIMITING CASE OF THE TWO-SIZE MIXTURE

At the time when the analysis in Part 1: Two Grain Sizes (Shen 1985) was carried out, this
author was not aware that the geometry and kinematics of the granular assembly as RD approaches
0 is very different from the case when RD approaches 1, as will be discussed in detail later. An
implicit assumption in the analysis in Part 1 is that RD approaches 1. Modified constitutive qua-
tions that relax this assumption are derived in this section. These modified constitutive equations

Z,- are obtained by combining the result shown in the previous section, which applies to the case
*. when RD approaches 1, and the result for the case as RD approaches 0.
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I=,,

I .du - - -(9

where NpQ (P and Q = L or S) is the frequency of all collisio-s between a P-size and a Q-size
sphere in a given unit volume and EpQ is the average energy wussipated in a collision between

NLS= NL Ns (I0a)
S

NLL= N LL (10b)

2-" NS (10c)

The average energy dissipation in each of the three different kinds of collisions is derived as

(Shen 1985):

- nD 1 _62 p(l+E) - M2(1+e)
2

ELLorSS Ps D VL orS [-- + I 4 (lla)

3 2 +Vs2  1- p2 "(I+E) M2 (1+e) 2

-- =P D VL [ + .(lIb)
ELS= Ps 6 DL)3 4

D S

To relate vL and vs , an equipartition of energy is assumed. Then

DV2  S (12)

namely, the energy contained in the fluctuational motion of the large and small spheres is the

same (the justification of this assumption is given by Shen 1985).
After assembling eq 6-12 into eq 5, the stresses for a mixture of two sizes of spheres are ob-

tained as

d2du 2 (1+6) 3/2(0.053+0.081 W)
3 /2 [1+(RC)RD-3 ] C13

= D 2 [ 2 + M2 2(1+,)2 Y2 2[1+(RC)RD -2] (C. 1 /C )
4 IT 4

F' F 3 /2 1
F,. -1(13a)

[I +(RC) RD-9/2 12 1 +RC

Sr 2 =-(1+e)YZ I
T"22 = T21 1 l+C) 112 (+C)7 1  n~

(0 .0 5 3 + 0 .0 8 1 p ) [ - --2 +) 4 M ) 2 F

[2V2(RL' + RC2RD3/2
) +4RC(RD)-' + RC(RD)- 

(13b)

(I+RD3)!i
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These three quantities-"~pQi, NpQ and ppi-are derived as (Shen 1985):

- irD' du
"ULL I Ps 6  (l+e) (0.053 + 0.0 8 1 p) d-2 (DL+S) (6a)idx 2

-- D 2(0 +e) 2v' (6b)
"MLL2 - Ps 6  /2  L

7rDS du
AUssI =Pps (I+e) (0.053 + 0.081 p) - (Ds+s) (6c)

- irDs 2(+e) vs  (6d)
AMSS 2  "s 6 s '

_ __ irD j du Ds+DL
SLI=LSI (Ps (+e)(0.053+0.081 i)0 ( + S (6e)

6dx 2  2 'Ds+DL

" D 4 (l+e)Dg 3 2

'USL2 =MLS2 Ps L "-' VS +VL6)

where vL and vs are fluctuation speeds of the large and the small spheres respectively

GLVL VL
NSL - (7b)

GVT s

N~s GVT S(7b)

GLVL VS 
(70NS L GVT s

s s (7d)
"NS GVT s

GVT= GLVL + Gsv s  (7e)

9 and

6 CGLDL
3 r (8a).PLI or 2 7GLD + GSDS

PSI or 2 6-GD+ (8b)
ir(GLDL + G5D )

Since the fluctuations are caused by the shearing motion, the work done by shear forces is the
energy input for this mode of motion. On the other hand, the collisions produced by these fluc-

,* tuations dissipate energy and this dissipation is the energy output for this mode of motion. When
a steady state is established in the simple shear motion described in Figure 1, the energy input and
output are balanced. In a mathematical form, this balance is presented as

4
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K. -. mixture, it is believed that although the results given in eq 54 and 56 and Figure 8 underestimate
the real stresses when the size gradation is very broad, the general trend of stress reduction as size
gradation broadens is not going to be affected.
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APPENDIX A: DERIVATION OF COLLISION FREQUENCY BETWEEN NEIGHBORING
SPHERES THAT FOLLOW THE MEAN SHEAR FLOW WITHOUT FLUCTUATIONS

Let D be the diameter of spheres, and s be the average gap between neighboring spheres. Figure
Al shows the location of a sphere B. The inner dashed semi-sphere is the locus of the centers of
neighboring spheres as a collision takes place on the surface of B. The outer dashed semi-sphere
is the locus of the average centers of the neighboring spheres around B.

-- X,

DD D

X3I

Figure A 1. Geometry of a collision driven by mean flow.

The collision frequency between neighboring spheres is calculated as

u/2 (Al)

where u is the mean relative velocity between neighboring spheres and 2 is the me.n distance
traveled to make a collision contact. An example of a special 2 is given in Figure Al.

When a sphere A collides with sphere B at

r sine cosO t + r sinq sinOk + r coso 7 < IrID (A2)' 2 2

sphere A must have traveled, according to the mean relative velocity, a certain distance 2i. In Fig-
ure AI, r = D . The mean location of sphere A before it started to move toward sphere B is, therefore,

= (r sino cosO + R) i+ r sinO sinO k +r cos"; IR I D + s. (A3)

Squaring eq A2 and A3, then subtracting one from the other, we find that

Q -D sino cosO +\1D2 sin2 ¢cos0 + (D+s)2 - D . (A4)

The velocity of sphere A, which has moved this distance, is

u -du(D +s) coso. (A5)
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Substituting eq A4 and A5 into Al, we calculate the collision frequency as

31r/2 7r/2

f f LdX (D +s) coso do dO
7r/2 0 

.(A6)
3 7r/ 2 7f/2

f f Dsin cosB + VD' sinlo 0 2 0+ (D +s)2 - D 2 do dO
ff/2 0
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